MACROLIDE BIOSYNTHESIS: STEREOCHEMISTRY OF THE HYDROXYLATION OF BREFELDIN C

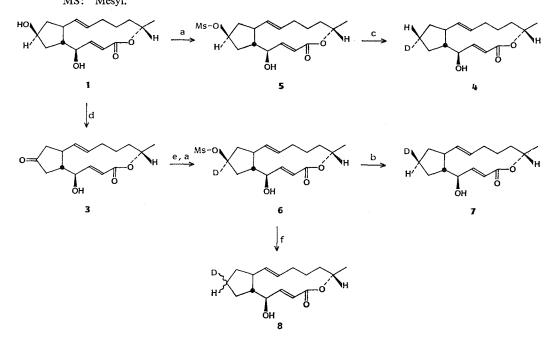
MARIO GONZALEZ DE LA PARRA[†] and C. RICHARD HUTCHINSON^{*}

School of Pharmacy and Department of Bacteriology, University of Wisconsin, Madison, WI 53706, U.S.A.

(Received for publication February 16, 1987)


Brefeldin C (2) is the penultimate intermediate in the biosynthetic pathway to brefeldin A (1). Using stereospecifically ²H-labeled forms of 2, the hydroxylation of 2 to 1 is shown to involve stereospecific removal of the 7 *pro-S* hydrogen from 2.

The biosynthesis of brefeldin A (1), a macrolide antibiotic produced by *Eupenicillium brefeldianum* and some other fungi, has been studied in several laboratories^{1- θ}). Brefeldin C (2) is the penultimate intermediate of the brefeldin A pathway⁷,^{θ}) and its hydroxylation involves molecular oxygen since that is the source of the oxygen attached to C-7^{θ}). These observations suggest that the conversion of 2 to 1 is catalyzed by a monooxygenase; if true, then stereospecific removal of one of the two diastereotopic hydrogens at C-7 should occur during the hydroxylation of 2 *in vivo*. We have confirmed this assumption by the results of the isotopic labeling experiments described here.


Results

Three samples of deuterium labeled 2 were prepared from unlabeled 1 by the chemical transformations shown in Fig. 1. Assuming that reduction of 7-O-mesyl-2 with sodium cyanoborodeuteride occurred with inversion of the C-7 configuration, which is precedented in other cases^{10,11)} and supported by the data given below, (7R)-[7-²H]-2 (4) was thus obtained from 5 and its 7 *pro-R* ²H characterized by a signal at 1.54 ppm in the ²H NMR spectrum, and at 25 ppm (t, J_{CD} =19 Hz) in the ¹³C NMR spectrum. Similarly, (7S)-[7-²H]-2 (7) was obtained from 6 and its 7 *pro-S* ²H observed to have a signal at 1.63 ppm in the ²H NMR spectrum and at 26.1 ppm (t, J_{CD} =20 Hz) in the ¹³C NMR spectrum. A sample of (7*RS*)-[7-²H]-2 (8) was prepared from 6 and found to be an equal mixture of 4 and 7 by ²H NMR spectroscopy. The deuterium content of all of these labeled compounds was 92% d_1 or d_2 (or greater), as determined by mass spectral analysis of their *tert*-butyldimethylsilyl (TBDMS) ethers.

These three compounds were fed separately in about equal concentrations to cultures of *E. bre-feldianum*. A trace amount of (7RS)-[7-³H]-2 was fed along with 7 and 8 for an internal control, since we anticipated that one of these compounds would loose most of its deuterium label during biological hydroxylation; thus its incorporation into 1 would have to be verified by a radioactivity measurement.

[†] Present address: Syntex S.A. de C.V., Paseo de La Reforma 2822, Mex. D.F. 11000, Mexico.

The ²H NMR spectrum of the samples of **1** isolated from each of the three feeding experiments showed a signal at 4.5 ppm, which was assigned to the deuterium atom attached to C- 7^{120} , but the intensity of this signal was significantly different in each case. For an accurate determination of isotopic enrichment, the *bis*-**TBDMS** ethers of these samples were prepared and their deuterium enrichments determined by mass spectral analysis. The specific incorporations of **4**, **7** and **8** into **1** calculated from these data are listed in Table 1.

The data show that the incorporation of ²H

Table 1. Specific incorporations of labeled precursors into 1.

Precursor -	Specific incorporation (%) ^e	
	² H	³ H
4	45.7	
7	6.7	18.9
8	21.9	16.5

^a Calculated by the formula, specific incorporation= $f_aA \times 100/f_bB$, where f_a is the percent isotopic enrichment (or specific radioactivity) of the isolated 1, f_b is the corresponding enrichment (or specific radioactivity) of 4, 7 or 8, A is the mmol of 4, 7 or 8, and B is the mmol of isolated 1.

into 1 from 4 was approximately twice that from 8. This indicates that the 7 *pro-S* hydrogen of 4 was stereospecifically removed during the biological hydroxylation of 2. The incorporation of ${}^{\circ}H$ into 1 was about the same in the feeding experiments with 7 and 8, which shows that these two precursors were similarly taken up and metabolized by the fungal cells. We therefore expected that the incorporation of 7 would not result in deuterium labeling of 1 since the result with 4 indicated that the 7 *pro-S* ${}^{\circ}H$ label in 7 should be removed during its hydroxylation. The fact that 1 contained some deuterium

1172

enrichment at C-7 from 7 is most likely due to a slight lack of stereospecificity during the reduction of 6. The resolution of the signals for the 7 *pro-R* and 7 *pro-S* deuterium atoms in the 30.6 MHz ²H NMR spectra of 4 and 7, respectively, was not large enough to permit detection of a small amount of contamination of the (7R)-[7-²H] isomer in the sample of 7 used in the feeding experiment. We therefore conclude that the hydroxylation of C-7 of 2 was stereospecific and occurred with retention of configuration.

Discussion

Our finding that 2 is converted to 1 by stereospecific hydroxylation of the diastereotopic C-7 position with retention of configuration is consistent with many other examples showing that biological hydroxylations mediated by monooxygenases involve the stereospecific replacement of a C-H bond by a C-O bond¹³). This suggests that the transformation of 2 to 1 is catalyzed by a cytochrome P-450 type of hydroxylase.

Experimental

General

The procedures used for culture maintenance and fermentation, standard chemical methods, and isolation and spectral analyses of 1 are described in refs 6, 8 and 9. Chemical shifts (δ) were determined at ambient probe temperatures in CHCl₃ or CDCl₃ for synthetic compounds and in pyridine for 1 that was isolated from the feeding experiments, and are reported relative to TMS as the external standard. Coupling constants (J) are given in Hz.

7-O-Mesylbrefeldin A (5)

Mesyl chloride (184 μ l, 2.38 mmol, 1.3 eq) was added dropwise to a solution of 1 (500 mg, 1.79 mmol) and triethylamine (184 μ l, 2.38 mmol, 1.3 eq) in pyridine (6 ml) at -13° C over a period of 10 minutes. The reaction mixture was stirred at -13° C for 35 minutes, then diluted with ethyl acetate, washed with 5% HCl, 10% NaHCO₃ and brine; and dried and concentrated to obtain a mixture of 4,7-*bis-O*-mesylbrefeldin A, 5 and starting material [Rf 0.54, 0.4 and 0.45, respectively, in *n*-hexane - ethyl acetate (2:3)]. This mixture was separated by preparative TLC, eluted with *n*-hexane - ethyl acetate (2:3), to yield 5 as a white precipitate (311 mg, 0.87 mmol, 49%): Rf 0.4 in *n*-hexane - ethyl acetate (2:3); ¹H NMR (200 MHz) δ 7.27 (1H, dd, J_1 =15.7 and J_2 =3.1), 5.86 (1H, dd, J_1 =15.7 and J_2 =1.8), 5.72 (1H, ddd, J_1 =15.1, J_2 =104 and J_3 =5.0), 5.21 (1H, dd, J_1 =15.1 and J_2 =8.8), 5.15~ 5.05 (1H, m), 4.84 (1H, m), 4.1 (1H, br d), 3.0 (3H, s), 1.24 (3H, d, J=6.2); MS *m/z* (relative intensity, %) 262 (15, M⁺ -CH₃-SO₃H), 202 (18), 151 (40), 79 (100).

(7R)-[7-²H]Brefeldin C (4)

7-O-Mesylbrefeldin A (155 mg, 0.43 mmol) and hexadecyltributyl phosphonium bromide (HDTBP⁺Br⁻)¹¹ (305 mg, 0.60 mmol) in dry toluene (5 ml) was added *via* syringe to a suspension of NaBD₃CN (98 atom % D, 259 mg, 3.9 mmol) in dry toluene (1 ml), under a nitrogen atmosphere. The reaction mixture was stirred at room temperature for 15 hours then diluted with ethyl acetate and poured into a separatory funnel containing brine (20 ml). The organic layer was separated and the aqueous layer was extracted with ethyl acetate. The organic extracts were combined, washed with 10% HCl, 10% NaHCO₃ and brine; and dried to yield a white crystalline solid (90.1 mg, 0.34 mmol, 80%): MP 152~153°C (recrystallized from hexane - acetone); ¹H NMR (500 MHz) δ 1.56~1.46 (2H, m); ²H NMR δ 1.54; ¹³C NMR δ 25.0 (t, J_{CD} =19); MS m/z (relative intensity, %) 265 (5, M⁺), 247 (7), 205 (28), 122 (100).

The TBDMS ether was prepared by the literature method⁶⁾ from 4 (7.4 mg, 0.03 mmol), imidazole (58 mg, 0.85 mmol), TBDMS chloride (105 mg, 0.7 mmol) in DMF (1 ml) to yield a white solid (6.1 mg, 0.016 mmol, 36%): Rf 0.36 in *n*-hexane - ethyl acetate (95:5); MS m/z (relative intensity, %) 322 (12.9), 321 (1, M⁺ -57, d_0 =7.3%, d_1 =92.7%).

7-Oxobrefeldin A (3)

Fetizon reagent¹⁴⁾ was prepared as follows. Purified Celite was added to a mechanically stirred solution of silver nitrate (34 g, 200 mmol) in distilled H₂O (200 ml). A solution of KHCO₃ (21 g, 210 mmol) in distilled H_2O (300 ml) was added slowly to the homogeneous suspension. When the KHCO₃ addition was complete, stirring was continued for a further 10 minutes and the yellow green precipitate which had formed was filtered off and dried in a rotary evaporator over a period of several hours (ratio of Ag₂CO₃ - Celite 1 mmol/0.57 g). Fetizon reagent (32.3 g, 56.7 mmol) was added to a suspension of 1 (1.02 g, 3.64 mmol) in dry benzene. The reaction mixture was heated to reflux for 8 hours, cooled, filtered through a pad of Celite, and washed with ethyl acetate. The combined filtrate and washings were concentrated to give an oily residue consisting of a mixture of 3, small amounts of 4,7-dioxobrefeldin A and starting material (Rf 0.38, 0.33 and 0.17, respectively). This mixture was separated by preparative TLC on silica gel, eluted with n-hexane - ethyl acetate (1:1), to yield 3 as a crystalline white solid (696 mg, 2.5 mmol, 68.7%), which was recrystallized from *n*-hexane - acetone. mp $120 \sim 122^{\circ}$ C (literature⁶⁾ $122 \sim 123.5^{\circ}$ C): Rf 0.52 in chloroform - methanol (9:1); ¹H NMR (200 MHz) δ 7.34 (1H, dd, J_1 =15.7 and J_2 =3.4), 5.90 (1H, dd, J_1 =15.7 and J_2 =1.8), 5.76 (1H, ddd, J_1 = 15.1, $J_2=9.5$ and $J_3=4.7$), 5.16 (1H, dd, $J_1=15.1$ and $J_2=9.0$), 4.85 (1H, m), 4.18 (1H, br d), 1.22 (3H, d, *J*=6.2); ¹³C NMR δ 215.5, 166.4, 150.9, 135.3, 132.4, 118.5, 76.7, 71.9, 50.1, 46.8, 45.1, 42.6, 34.5, 31.7, 26.5, 20.8; MS m/z (relative intensity, %) 278 (2, M⁺).

$[7-^{2}H]$ -7-*O*-Mesylbrefeldin A (6)

Solid NaBD₄ (218 mg, 5.19 mmol) was added to a solution of 3 (629 mg, 2.26 mmol) in dry methanol (10 ml), magnetically stirred, at -78° C under a nitrogen atmosphere. The reaction mixture was maintained at the same conditions for 1 hour, the quenched with acetic acid - chloroform (1 : 1, 2 ml), diluted with ethyl acetate (50 ml), and poured into a separatory funnel containing 5% HCl (20 ml). The organic layer was separated, washed with 10% NaHCO_s, dried and concentrated to obtain a solid residue which was column chromatographed on silica gel in ethyl acetate to yield [7-²H]brefeldin A as a crystalline white solid (567 mg, 2.02 mmol, 89.6%) which was recrystallized from ethyl acetate, mp 195~197°C (literature¹⁵⁾ 204~205°C): Rf 0.41 in chloroform - methanol (9 : 1); ¹H NMR (200 MHz, pyridine- d_s) δ no signal at 4.55; ¹³C NMR (pyridine- d_s) δ very weak signal at 71.9.

The mesylate of [7-²H]brefeldin A was prepared as described for 5, using [7-²H]-1 (518 mg, 1.84 mmol), triethylamine (0.26 ml, 2.41 mmol), mesyl chloride (0.188 ml, 2.43 mmol) in pyridine (8 ml) to yield 6 as a white precipitate (430 mg, 1.20 mmol, 65%): ¹H NMR (200 MHz) δ no signal at 5.15~5.05 (1H, m).

(7S)-[7-²H]Brefeldin C (7)

Solid NaBH₃CN (200 mg, 3.18 mmol) was added to a solution of **6** (79 mg, 0.22 mmol) and HDTBP⁺Br⁻ (335 mg, 0.66 mmol) in dry toluene (5 ml). The reaction mixture was stirred at room temperature, and after 24 hours, only a small amount of 7-bromobrefeldin C and starting material were detected by TLC. The reaction was stirred 48 hours more at the same conditions, and worked up as described above to obtain a mixture of **7** and some 7-bromobrefeldin C which was separated by preparative TLC on silica gel, eluted with *n*-hexane - ethyl acetate (3:1), to yield **7** as a crystalline white solid (34.6 mg, 0.13 mmol, 59%): MP 151~153°C (recrystallized from *n*-hexane - ethyl acetate); Rf 0.3 in *n*-hexane - ethyl acetate (4:1); ¹H NMR (500 MHz) δ 1.64~1.57 (1H, m); ¹³C NMR δ 26.1 (t, J_{CD} =20); ²H NMR δ 1.63.

The TBDMS ether of this brefeldin C was prepared as described above from 7 (0.8 mg, 0.003 mmol), imidazole (10 mg, 0.15 mmol), TBDMS chloride (50 mg, 0.3 mmol) in DMF (0.4 ml) to yield the desired product: Rf 0.36 in *n*-heptane - ethyl acetate (95:5); MS m/z (relative intensity, %) 322 (19.74), 321 (1.74, M⁺ -57, d_0 =8.2%, d_1 =91.8%).

(7RS)-[7-2H]Brefeldin C (8)

Solid NaBH₃CN (440 mg, 6.98 mmol) was added to a solution of **6** (178 mg, 0.49 mmol) and HDTBP⁺Br⁻ (48.6 mg, 0.1 mmol) in dry toluene (4 ml). The reaction mixture was stirred at room temperature for 5 days, then worked up as described before to yield **8** (65 mg, 0.25 mmol, 50%) as a

white crystalline solid: MP 151~152°C; the ¹H NMR spectrum was essentially identical to the spectrum of **2**; the ¹³C NMR spectrum was identical to the spectra of the other deuterium labeled isomers; ²H NMR (55.3 MHz) δ 1.65 and 1.57 (1:1).

The TBDMS ether of this brefeldin C was prepared as described above from 8 (1.8 mg, 0.007 mmol), imidazole (10 mg, 0.15 mmol), TBDMS chloride (50 mg, 0.3 mmol) in DMF (0.5 ml) to yield the desired product (2 mg, 0.005 mmol, 77%): Rf 0.36 in *n*-heptane - ethyl acetate (95:5); MS m/z (relative intensity, %) 322 (28.14), 321 (1.18, M⁺ -57, $d_0 = 4.1\%$, $d_1 = 95.9\%$).

(7*RS*)-[7-³H]Brefeldin C

This compound was prepared as described in ref 9.

TBDMS Ethers of 1 Isolated from the Feeding Experiments

These were prepared and analyzed by mass spectrometry as described in ref 6.

Acknowledgments

We thank DAN BECK for technical assistance. This research was supported by a grant from the National Institutes of Health (GM 25799) and by a fellowship to M.G. from the CONACYT of Mexico.

References

- 1) COOMBE, R. G.; P. S. FOSS & T. R. WATSON: The biosynthesis of brefeldin A. J. Chem. Soc. Chem. Commun. 1968: 1229, 1968
- HANDSCHIN, U.; H. P. SIGG & C. H. TAMM: Zur biosynthese von brefeldin A. Helv. Chim. Acta 51: 1943~1965, 1968
- BU'LOCK, J. D. & P. T. CLAY: Fatty acid cyclization in the biosynthesis of brefeldin A: A new route to some fungal metabolites. J. Chem. Soc. Chem. Commun. 1969: 237~238, 1969
- COOMBE, R. G.; P. S. FOSS, J. J. JACOBS & T. R. WATSON: The biosynthesis of brefeldin A. Aust. J. Chem. 22: 1943~1950, 1969
- CROSS, B. E. & P. HENDLEY: The biosynthesis of brefeldin A. J. Chem. Soc. Chem. Commun. 1975: 124~125, 1975
- MABUNI, C. T.; L. GARLASCHELLI, R. A. ELLISON & C. R. HUTCHINSON: Biosynthesis of C₁₅ macrolide antibiotics. I. Biochemical origin of the four oxygen atoms in brefeldin A. J. Am. Chem. Soc. 101: 707~ 714, 1979
- SUNAGAWA, M.; T. OHTA & S. NOZOE: Biosynthesis of brefeldin A. Introduction of oxygen at the C-7 position. J. Antibiotics 36: 25~29, 1983
- HUTCHINSON, C. R.; L. SHU-WEN, A. G. MCINNES & J. A. WALTER: Comparative biochemistry of fatty acid and macrolide antibiotic (brefeldin A). Formation in *Penicillium brefeldianum*. Tetrahedron 39: 3507~3513, 1983
- YAMAMOTO, Y.; A. HORI & C. R. HUTCHINSON: Biosynthesis of macrolide antibiotics. 6. Late steps in brefeldin A biosynthesis. J. Am. Chem. Soc. 107: 2471 ~ 2474, 1985
- 10) HUTCHINS, R. O.; K. DURAISAMY, F. DUX, C. A. MARYANOFF, D. ROTSTEIN, G. GOLDSMITH, W. BURGOYNE, G. CYSTONE, J. DALESSANDRO & J. PUGLIS: Nucleophilic borohydride: Sulfonate esters, tertiary amines and N,N-disulfonimides with borohydride reagents in polar aprotic solvents. J. Org. Chem. 43: 2259~ 2267, 1978
- ROLLA, F.: Sodium borohydride reductions under phase-transfer catalysis: Conversions of halides and sulfonate esters into alkanes. J. Org. Chem. 46: 3909~3911, 1981
- 12) HUTCHINSON, C. R.; I. KUROBANE, D. E. CANE, H. HASLER & A. G. MCINNES: Biosynthesis of macrolide antibiotics. 4. Stereochemistry of hydrogen labeling of brefeldin A by [2-²H₃]acetate. J. Am. Chem. Soc. 103: 2477 ~ 2480, 1981
- 13) HAMBERG, M.; B. SAMUELSSON, I. BJORKHEM & H. DANIELSSON: OXYGENASES in fatty acid and steroid metabolism. In Molecular Mechanism of Oxygen Activation. Ed., O. HAYAISHI, pp. 30~85, Academic Press, New York, 1974
- FETIZON, M.; M. GOLFIER & J.-M. LOUIS: Oxidations par le carbonate d'argent sur celite-XIII. Preparation of lactones. Tetrahedron 31: 171~176, 1975
- 15) HARRI, E.; W. LOEFFLER, H. P. SIGG, H. STAHELIN & C. TAMM: Uber die isolierung neuer stoffwechselprodukte aus *Penicillium brefeldianum* Dodge. Helv. Chim. Acta 46: 1235~1243, 1963